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Summary. We study the formation and the dynamics of correlations in the ve-
locity field for 1D and 2D cooling granular gases with the assumption of negligible
density fluctuations (“Homogeneous Velocity-correlated Cooling State”, HVCS). It
is shown that the predictions of mean field models fail when velocity fluctuations be-
come important. The study of correlations is done by means of molecular dynamics
and introducing an Inelastic Lattice Maxwell Models. This lattice model is able to
reproduce all the properties of the Homogeneous Cooling State and several features
of the HVCS. Moreover it allows very precise measurements of structure functions
and other crucial statistical indicators. The study suggests that both the 1D and
the 2D dynamics of the velocity field are compatible with a diffusive dynamics at
large scale with a more complex behavior at small scale. In 2D the issue of scale
separation, which is of interest in the context of kinetic theories, is addressed.

1 Introduction

The inelastic hard spheres model [1] without energy input, initially prepared
in a homogeneous state, exhibits, after a rapid transient, a regime charac-
terized by homogeneous density and a probability distribution of velocities
that depends on time only through the total kinetic energy (global granular
temperature Tg(t)), i.e. a scaling velocity distribution. This is the so called
Homogeneous Cooling State (HCS) or Haff regime [2]. It has been shown
by several authors [3–6] that this state is unstable with respect to shear and
clustering instabilities: structures can form that seem to minimize dissipation,
mainly in the form of velocity vortices and high density clusters. These insta-
bilities grow on different space and time scales, so that one can investigate
them separately. Several theories have been proposed to take into account
the emergence of structures in granular gases. Some of these are more fun-
damental, because derive the correlation functions directly from the kinetic
equations [7]; others, that assume the validity of the hydrodynamic descrip-
tion, deserve the name of mesoscopic theories [8]; others are phenomenolog-
ical theories that suggest analogies with Burgers equation [9,10] or spinodal
decomposition models [11] or mode coupling theories [12]. Some of these the-
ories can describe the behavior of the cooling granular gas far deeply into the
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correlated regime, giving predictions for the asymptotic decay of energy. In
this paper, after a brief summary of the results of these theories, we show
how the departure from the HCS can be well modeled by a class of mod-
els obtained placing on a lattice the original homogeneous Inelastic Maxwell
Model. These models have the disadvantages of being conceived under the as-
sumption of negligible density fluctuations and therefore can be useful only in
the description of the first instability, i.e. the growth of velocity fluctuations.
In section 2 we review the HCS, its instabilities and the existing theories. In
section 3 we briefly discuss the Inelastic Maxwell Model [13–15], which is a
starting point for the introduction of the Inelastic Lattice Maxwell Models
(ILMM). In section 4 and in section 5 the analysis and results of the ILMM in
one and two dimensions are reviewed [14,16]. Finally in section 6 conclusions
are drawn.

2 Instabilities of the Homogeneous Cooling State

A cooling granular gas in d dimensions is defined as an ensemble of N grains,
i.e. hard objects (rods if d = 1, disks if d = 2, spheres if d = 3) of linear size
(diameter) σ, placed in a volume V with periodic boundary conditions. The
grains evolve freely and interact with each other through instantaneous binary
inelastic collisions. The rule that gives the velocities after the collision as
functions of the velocities before the collision is the definition of the particular
granular gas model. In this case we use the model with constant restitution
coefficient without rotational degrees of freedom and set the mass of the
grains m = 1. Other models have been considered in the literature [1]. The
collision rule between a particle with velocity v and one with velocity v∗ for
this model is:

v′ = v − 1 + r

2
[(v − v∗) · n̂]n̂ (1)

where the primed velocity is the post-collisional one, n̂ = (r− r∗)/|r− r∗| is
the unit vector in the direction joining the centers of colliding particles, and
r is the restitution coefficient and takes values between 0 and 1. When r = 1
the collision is elastic.

Usually (in numerical or real experiments) granular gases are prepared in
a homogeneous situation: uniform-random positions of grains, Gaussian or
uniform-random initial velocity with no preferred direction. It happens that,
if the system is large enough or the inelasticity large enough, the imposed
homogeneity is broken after a certain time. The more accepted scenario is
a two time homogeneity breaking: at a time ts the velocity field becomes
unstable to the formation of shear bands, then at a time tc > ts the density
field becomes unstable toward the formation of high density clusters.
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2.1 The homogeneous cooling state

A granular gas evolving from a homogeneously random state loses memory of
its initial condition after a time of the order of one collision per particle and
rapidly enters the Homogeneous Cooling Regime. This regime is expected to
be well described by the granular Boltzmann Equation (see for example [7]).
This means that in this regime the total probability density function (p.d.f.)
at collision is factorisable in one-particle p.d.f.’s: pN (r1...rN ,v1...vN , t) =
∏N

i=1 p1(ri,vi, t).
The kinetic definition of HCS is given by the homogeneity ansatz plus the

scaling ansatz for the one particle distribution function:

p1(r,v, t) =
1

V
P (v, t) =

1

V vd
0(t)

P̃ (c) (2)

where c = v/v0(t) and v0(t) is the thermal velocity defined by T (t) = v2
0(t)/d

with T (t) the granular temperature; here we have assumed that
∫

dv
∫

drp1 =
1 and also that

∫

dvP = 1. If the Eq. (2) is inserted in the Boltzmann
Equation an equation for the temperature is obtained:

dT

dt
= −2ωγT (3)

where ω is the time dependent collision frequency, while γ is the time
independent cooling rate. These two functions can be approximated, using

the Maxwellian approximation P̃ ≈ (2π
2 )−d/2 exp(− dc2

2 ), by ω0 and γ0:

ω0 ∝
√

T (4a)

γ0 =
1 − r2

2d
. (4b)

In this case the solution of the temperature equation (3) reads:

T (t) =
T (0)

(1 + γ0t/t0)2
= T (0) exp(−2γ0τ) (5)

where t0 = 1/ω(T (0)) is the mean free time at the initial temperature
T (0) and

τ =
1

γ0
ln(1 + γ0 + t/t0) (6)

is the cumulated collision number obtained from the definition dτ = ω(T (t))dt.
Eq. (5) is known as Haff’s law [2].

Corrections to the constants appearing in eq. (5) stem from a more care-
ful consideration of the HCS: when the volume fraction is non negligible the
Enskog-Boltzmann equation should be employed instead of Boltzmann equa-
tion. This is identical to the Boltzmann equation but for a multiplicative
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Fig. 1. Growth rates ζλ/γ0 for shear (λ =⊥), heat (λ = H) and sound (λ = ±)
modes versus kσ for inelastic hard disks with r = 0.9 at a packing fraction φ = 0.4.
The dashed line indicate the imaginary parts of the sound modes. Here σ is the
diameter of a particle. (From Orza et al. [19])

constant in the collision integral that takes into account static density cor-
relations due to the fact that the gas is not perfectly dilute. Very recently
it has been shown [17] that there are also small velocity correlations which
must be considered and that modify the molecular chaos hypothesis: with
this correlations the law T ∼ t−2 is still valid but more precise corrections to
the constant γ0/t0 appear.

The Haff law can be also derived in the framework of granular hydro-
dynamics [18,6]: in the HCS hydrodynamics can be considered valid as a
consequence of homogeneity of the density and velocity field and of the slow
temperature decay. The evolution of the (space uniform) temperature field is
exactly the same as in eq. (5).

2.2 Instabilities of the homogeneous cooling state

Kinetic arguments, linear stability analysis of hydrodynamic equations and
numerical simulations lead to the evidence that the HCS is unstable. In par-
ticular, it has been shown that large scale fluctuations of velocity and density
can grow exponentially breaking the homogeneity of the system. The fact that
the fluctuations arise at large scale means that, if the system is small enough,
the HCS lasts forever. Moreover the minimum scale of formation of fluctu-
ations depends upon inelasticities and is smaller at larger inelasticities: this
means that for a quasi-elastic gas it is necessary to take a very large volume
to observe the breaking of homogeneity.
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The linear stability analysis of hydrodynamics gives a good description of
the instability of fluctuations. The procedure is applied to the fields rescaled
with respect to the Homogeneous Cooling State, i.e. ñ = n(r, t)/n (being n
the average density), ũ(r, t) = u(r, t)/

√

T (t) and T̃ (r, t) = T (r, t)/T (t), and
therefore any instability or emerging structure is not absolute but relative to
this decaying reference state. Moreover the instabilities are studied in k space
(the space of Fourier modes) and, when d > 1, the velocity field is decom-
posed in a parallel component ũ‖(k, t) and in d − 1 orthogonal components
ũ⊥(k, t) with respect to the vector k. In figure 1 we report the results of
such an analysis, taken from the literature [19]. This analysis shows that the
evolution of fluctuations of normal velocity components (shear modes, ũ⊥)
are not coupled with any other fluctuating component. At the same time,
the remaining components are coupled together. The rate of decay/growth
for the shear mode reads ζ⊥(k) = γ0(1 − k2ξ2

⊥) where ξ⊥ depends on the
transport coefficients appearing in the hydrodynamics. We refer to [8] for
detailed calculations of this correlation length. At low values of k (in the so-
called “dissipative range”) also the heat mode is “pure”, as it is given by the
longitudinal velocity mode ũ‖ only, with eigenvalue ζH(k) ' γ0(1− ξ2

‖k
2); in

this range the sound modes are combination of density and temperature fluc-
tuations. The most important result of this analysis is that ζ⊥(k) and ζH(k)
are positive below the threshold values k∗

⊥ = 1/ξ⊥ ∼ √
ε and k∗

H ' 1/ξ‖ ∼ ε
respectively, indicating two linearly unstable modes with exponential (in τ ,
i.e. the time measured by the cumulated number of collisions per particle)
growth rates. Here we have used the notation ε = 1 − r2 ≡ 2dγ0.

The shear and heat instabilities are well separated at low inelasticity (i.e.
low ε), as k∗

⊥ ∼ √
ε while k∗

H ∼ ε, so that k∗
⊥ � k∗

H . It is also important
to note that the linear total size L of the system can suppress the various
instability, because the minimum wave number kmin = 2π/L can be larger
than k∗

H or even than k∗
⊥.

When fluctuations grow, structures emerge. In molecular dynamics sim-
ulations these structure appear as shocks in d = 1, or vortices and clusters
in d = 2. In d > 2, a detailed analysis of structure factors (from fluctuat-
ing hydrodynamics [8] or ring kinetic theory [7]) has established that all the
main correlation lengths (which indicate the typical size of structures in the

rescaled fields) should grow as ∼ τ1/2. In particular this is expected for the
size of vortices Lv ∼ τ1/2 and the size of clusters Lcl ∼ (τ/ε)1/2: this again
shows that, at small inelasticities ε, the size of clusters grows more slowly
than that of vortices.

2.3 Conjectures

After a brief transient during which the instabilities grow exponentially in
τ with the rates given above, the description suggested by linear stability
analysis ceases to be meaningful. Molecular dynamics (MD), in the absence of
experiments (the cooling granular gas being a reference model and not a real
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system), are the more reliable tools, but they are very cpu-time consuming:
to obtain a decent statistics of the asymptotic dynamics of a granular gas,
large enough to observe instabilities, MD simulations must be carried on for
days. To our knowledge a definitive clear picture of the asymptotics of this
model is still lacking (with month-lasting simulations Isobe [20] has obtained
what he called the “final state”, which resembles 2D turbulence, but this was
done in a quasi-elastic limit).

On the other side there are effective models that can grasp the essence of
the phenomena with particular assumptions. Here we rapidly review some of
these:

• Brito and Ernst have shown by means of a mode-coupling [12] theory
that the asymptotic energy decay should follow a diffusive form ∼ τ−d/2.

• Wakou et al. [11] have demonstrated that the evolution of the flow field
of a granular fluid, neglecting the convective term u · ∇u, can be cast
in the form of a Time Dependent Ginzburg-Landau equation for a non-
conserved order parameter. The energy functional has a continuous set
of degenerate minima, having the shape of a Mexican hat. When the
convective term is added, only subsets of admissible solutions are selected
out of this infinite set of minima. In two dimensions only two distinct
minima survive: therefore the d = 2 cooling granular gas, during the
formation of instabilities, greatly resembles the spinodal decomposition
for a non-conserved order parameter (Model A universality class, in the
Hohenberg-Halperin classification [21]).

• Ben-Naim et al. [9] have studied the cooling granular gas in d = 1, dis-
covering that, after the homogeneous (Haff) phase, it asymptotically be-
comes independent of the value of inelasticity ε and maps onto the sticky
gas model. For such a sticky gas the asymptotic temperature decay is pro-
portional to t−2/3, when density clusters and velocity shocks form. The
velocity field of the sticky gas [22] is described by the inviscid limit of the
Burgers equation [23]. The relation to the Burgers equation is useful to
establish an estimate of the tails of the asymptotic velocity distribution
P (v, t) ∼ t1/3Φ(vt1/3) (independent of r), which reads Φ(z) ∼ exp(−|z|3).
The MD simulations have revealed only slight deviations from the Gaus-
sian, and the authors have imputed the discrepancy from the expected
behavior to the smallness of the constant in front of |z|3. More recently
it has been conjectured [10] that the Burgers equation describes the flow
velocity u(r, t) of a cooling granular gas for arbitrary values of the inelas-
ticity ε in generic d dimensions. This conjecture implies that the asymp-
totic behavior of the cooling inelastic gas is independent of ε (as it always
falls in the universality class of the sticky gas) and that the upper crit-
ical dimension for the disappearance of the inelastic collapse is dc = 4.
However MD simulations in d > 4 seem to show that the shear instability
and the inelastic collapse do not disappear [24].
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3 A starting point: the homogeneous Inelastic Maxwell

Model

To better illustrate the analysis of the Inelastic Lattice Maxwell Models
(ILMM) we start with a brief description of the homogeneous Inelastic Maxwell
Model (IMM). The definition of the model is given in terms of its Boltzmann
Equation, which, for scalar velocities (d = 1), reads:

∂P (v, τ)

∂τ
+ P (v, τ) =

1

1 − γ∗

∫

duP (u, τ)P

(

v − γ∗u

1 − γ∗
, τ

)

(7)

with γ∗ = (1 − r)/2. The IMM can be introduced in different ways: (a)
its Boltzmann equation can be regarded as the master equation of a simple
stochastic process inspired to a model put forward by S.Ulam [25]: the pro-
cess consists in the evolution of an ensemble of N velocities, at each time
step (corresponding to ∆τ = 2/N , so that τ increases of 1 after averagely
one collision per particle) two velocities are chosen at random with uniform
distribution and are changed according to the inelastic collision rule; (b) the
associated Boltzmann equation can be considered the inelastic generaliza-
tion of the equation for elastic Maxwell Molecules [26,27]; (c) its Boltzmann
equation can be derived from the ordinary Boltzmann equation for inelastic
hard spheres assuming that the term |v − v′| in the collision integral can be
approximated by

√
T , as suggested by Bobylev et al. [28].

The recent surge of interest for this model has been triggered by the
discovery of an exact solution [13–15] for the d = 1 case (eq. (7)) and the ap-
pearance of computable power law tails in the solutions of d > 1 cases. [29,30].
In a previous paper Ben-Naim and Krapivsky [31] showed that eq. (7) could
not have a scaling solution with finite moments: in fact, a scaling form

P (v, τ) → 1

v0(τ)
f(

v

v0(τ)
) (8)

with v2
0(τ) =

∫

v2P (v, τ)dv = E(τ) ∼ exp(−τa2), imposes a temporal de-
pendence of the higher moments (if finite):

〈v2m〉 = v0(τ)2mµ2m (9a)

where µ2m =

∫

dyf(y)y2m (9b)

does not depend on time. But they found that

lim
τ→∞

〈v2m(τ)〉
(

〈v2(τ)〉
)m = ∞. (10)

This result does not exclude the existence of a scaling solution (8) but
requires a solution with diverging moments of order 2m ≥ 4, i.e. very large
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Fig. 2. Asymptotic velocity distributions P (v, τ ) versus v/v0(τ ) for different values
of r from the simulation of the Inelastic Maxwell Model in 1D (left) and 2D (right).
In 1D the asymptotic distribution is independent of r and collapse to the Eq. (11).
In 1D, the chosen initial distribution (exponential) is drawn (same result with
uniform and Gaussian initial distribution). In 2D the distributions still present
power-law tails, but the power depends upon r: for r → 1 the pdf tends to a
Maxwell distribution. Data refers to more than N = 106 particles.

algebraic tails. In this case standard methods [27] based on Fourier transform
fails due to the singularity in k = 0 corresponding to such algebraic tails.

Remarkably, a direct inspection shows that the following velocity distri-
bution

P (v, τ) =
2

πv0(τ)

[

1 +
(

v
v0(τ)

)2
]2 (11)

is indeed a solution of the non-linear Boltzmann equation (7), for every value
of r [13–15]. The solution (11) has the property that the moments of order
2m ≥ 4 diverge, and its Fourier transform has a singularity of the type |k|k2

in k = 0.
We believe that eq. (11) represents the asymptotic solution for a large

class of initial distributions, for the following arguments:

• as shown by Ben Naim and Krapivsky [31], the dynamics of the moments
for a generic starting distribution can be computed, giving the following
limit limt→∞〈v2m(t)〉/〈v2(t)〉m = ∞ for m > 1;

• secondly we performed numerical simulations of the BK model, collecting
evidence of the convergence to the solution (11) for several starting veloc-
ity distributions, namely uniform, exponential (see figure 2, left frame)
or Gaussian.
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For higher dimensions, the problem of a scaling solution has been recently
addressed in [10,29]. Assuming a solution with large algebraic tails, it is pos-
sible to compute the asymptotic exponent as a solution of a transcendental
equation. Such equation depends explicitly on the restitution coefficient, indi-
cating that the tail exponent varies with r (and correctly diverges for r → 1,
corresponding to the recovering of the Maxwell distribution for the elastic
case).

A numerical observation of such algebraic tails in 2 dimensions are shown
in right frame of figure 2, where a dependence on r is put in evidence. A more
precise comparison of the measured exponent and the theoretical predictions
are shown in figure 3. In this figure we show the results of extensive numerical
simulations for the completely inelastic case (r = 0) of several models, in two
and three dimensions.

In fact, as noted in [29], the tail exponent is in general dependent on
the details of the collisions, as for instance on the distribution of the impact
parameter. Two different choices have been studied in 3 dimensions, corre-
sponding to the models denoted IMM-A and IMM-B in reference [29]: in the
first model grazing collisions are favored with respect to the second one. It is
interesting to notice that the analytical and numerical study confirm the ex-
istence of a scaling solution with algebraic tails, irrespectively of the collision
details, but that the precise value of the exponent is not universal.

The relevance of such a scaling solution for d > 1 has been addressed by
Bobylev et al. [32], who have proved the existence and the uniqueness of such
an asymptotic solution (giving details on the basin of attraction).

Interesting features emerge when the inelastic Maxwell model is extended
to treat grains having different physical properties, such as unequal masses,
different restitution coefficients, radii, etc. The study of a binary Maxwell
mixture with scalar velocities showed few unexpected properties [33,34]:

1. the kinetic temperatures of the two species are different, i.e. there is no
energy equipartition, but the the ratio T1/T2 reaches asymptotically a
constant value. Such a feature agrees with the results obtained in the
framework of the Boltzmann-Enskog transport equation by Garzò and
Dufty [35].

2. The velocity distributions in general differ in shape.
3. The velocity distributions have power law tails. These exponents can be

calculated analytically, by a suitable generalization of a technique devised
by Ernst and Brito [29]. The power law decay of cooling mixtures has been
shown to vary between 2 and ∞.

4 The one-dimensional gas

The solution of the IMM given in (11) has nothing to do with the real dynam-
ics of a cooling granular gas in the homogeneous regime, where no algebraic
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Fig. 3. Asymptotic velocity distributions P (|v|, τ ) versus |v|/v0(τ ) for r = 0 from
the simulation of the Inelastic Maxwell Model in 2D (left) and 3D (right). In 2D
the asymptotic distribution tail converges to the exactly computed exponent (model
IMM-A). In 3D the convergence is slower, but the difference of the predicted ex-
ponent for model IMM-A and IMM-B can be appreciated. In the bottom panels
the convergences of the local logarithmic slope is put in evidence. (For the precise
definition of the two models see [29].) Data refers to more than N = 106 particles.

tails appear. Instead, a good agreement (in the HCS) is found between the so-
lution of Boltzmann equation [36] and Molecular Dynamics [37]. However we
will show in the following that the Inelastic Maxwell Model with the addiction
of a special topology (the 1d lattice) is able to reproduce the homogeneous
regime and some essential features of the first instability (enhancement of
velocity fluctuations).

4.1 Molecular Dynamics

An MD simulation of N hard rods on a ring of length L shows that, besides
hydrodynamic instabilities discussed above, also a kinetic singularity appears
that prevents long simulation runs, the so-called “inelastic collapse” [4,38].
The inelastic collapse is the divergence of the collision rate of a small set of
grains, analogous to the divergence of the collision rate of a ball left bounc-
ing on the floor. This means that a group of particles will experience an
infinite number of collisions in a finite time. To avoid such a problem, many
authors [9,39] have proposed the introduction of a velocity cut-off δ such
that, whenever two particles collide with a relative velocity smaller, in ab-
solute value, than δ, the collision is elastic. Taking δ2 � Tmin, being Tmin

the minimum granular temperature that one expects to observe, one can be
sure that the choice of δ will not influence the main results of the simulation.
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Fig. 4. Time behavior of kinetic energy for the Inelastic Hard Rods (left) and
for the Inelastic Lattice Maxwell Model (right). The homogeneous Haff stage is
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immediately in the correlated regime. Note the different time units used (t is the
physical time, defined only in MD simulations, while τ is the cumulated number
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systems. The correlated regime presents a behavior t−2/3 independent of r for the
Hard Rods, while appears diffusive (in collision units) τ−1/2 and r-dependent for
the Lattice Model. Data refer to N = 106 particles (both models).

Performing an efficient Event Driven simulation scheme (based on a tree or-
dering of the event times) it is possible to study easily very large systems,
with N ∼ 106 for thousands of collisions per particle.

In the left panel of figure 4 the decay of kinetic energy E(t) ≡ T (t) = 〈v2〉
is shown. It displays, for different values of r, the same behavior with two
regimes: in the HCS E(t) ∼ t−2 (Haff’s law), then it decays differently, i.e.
E(t) ∼ t−3/2. Noticeably all the curves seem to collapse in the second regime,
i.e. the asymptotic regime is equivalent (not only in the exponent, but also
in the coefficients) for every value of r.

The velocity pdf’s are shown in figure 5: in the HCS it appears the peculiar
“two-peaks” form, which is also predicted by the study of the Boltzmann
equation in the quasi-elastic limit [36]. In the second regime (which cannot be
described by the Boltzmann equation, because of the presence of correlations)
the pdf becomes a Gaussian.

What can be said about correlations in the second regime? An inspec-
tion of the velocity profile vi vs. xi (see top panel of figure 6) suggests the
presence of shocks, i.e. asymmetric “discontinuities” of the velocity profile in
correspondence with peaks of density (clusters). A more quantitative informa-
tion about the velocity field is given by the study of the structure function
S(k, t) = v̂(k, t)v̂(−k, t) where v̂(k, t) is the Fourier transform of the field
v(i, t), presented in the left frame of figure 7. A good collapse is obtained if
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having the same energy. Data refer to N = 106 particles (both models) with r = 0.99
and r = 0.5 (for the lattice model in the inhomogeneous regime).
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frame we display the MD profile against the particle label in order to compare the
shocks and preshocks structures with the lattice gas model (the dotted lines show
how shocks and preshocks transform in the two representations for the MD). Data
refers to N = 2 · 104 particles, r = 0.99 (both models).
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S(k, t) is plotted at different times t versus kt2/3 ∼ k/E(t). The presence of
short scale defects (shocks) is put in evidence by the form of structure factor
at high values of k, where S(k, t) ∼ k−2: this tail of the structure function
is expected, in d = 1, in the coarsening of a two-phases system, due to the
non-analyticity (at short distances) of the spatial correlation function. This
is also known as Porod law in the theory of phase ordering kinetics [40–42].

4.2 The Inelastic Lattice Maxwell Model

The Inelastic Lattice Maxwell Model in d = 1 is defined as follows. A set of
N scalar velocities are placed on N sites on a ring. After a time ∆τ = 2/N a
couple of neighbors is chosen and is updated with the usual inelastic collision
rule. The only constraint in the choice of the couple is that vi > vi+1: this is
called the kinematic constraint and represents the physical condition neces-
sary for a collision. It must be noted that the choice of colliding particles does
not depend on the modulus of the relative velocity: this is why we consider
this a “Inelastic Maxwell Model” embedded in a 1d lattice. In this model
the only measure of time is τ , i.e. the cumulated number of collisions per
particle. This makes many measures difficult to be compared with analogous
MD measurements: in fact in MD simulations τ(t) depends upon the choice
of δ (the elastic cut-off), while all observables depend on t independently of
δ.

The analysis of the ILMM follows closely that of MD simulations and the
results [13,14] are presented, in parallel, in the same figures 4, 5, 6, 7.
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The study of the decay of energy (figure 4) indicates that the model well
reproduces the Haff regime (E(τ) ∼ exp(−γ0τ)) and displays a decay in the
second regime of the form ∼ τ−1/2.

The velocity pdf’s reproduce exactly the ones measured in MD simulations
(see fig. 5), showing the “two-peaks” form in the Haff stage and the Gaussian
in the late stage. It must be stressed again that these features are obtained
simply applying to the Inelastic Maxwell Model (which displays tails P (v) ∼
v−4) a two-neighbors (instead of N -neighbors) topology.

The inspection of velocity profiles must be carefully carried: in this model
the particles cannot move and therefore a comparison with MD should be
made considering vi vs. i instead of xi. The good agreement between MD
and ILMM can be appreciated in the two bottom panels of figure 6: with this
choice of abscissa, the shocks observed in MD simulations appear reversed
and smoothed, very similar to the ones observed in the ILMM. Analogously
the structure factor presents similar features with MD, mainly a k−2 behavior
at high values of k (short scales) which is a signature of topological defects.
In the lattice case the collapse can be obtained plotting S(k, τ) against kτ1/2,
i.e. ∼ k/E(τ) as in the MD case. We have also verified that, removing the
kinematic constraint, this structure disappears and the model behaves as
governed by a simple diffusion equation.

5 The two-dimensional gas

The number of interesting and realistic results obtained with the one di-
mensional Inelastic Lattice Maxwell Model, in spite of its extreme simplicity,
convinced us to extend our study to two dimensions.

However, a smaller number of results is known from Molecular Dynamics
in d = 2, especially in the correlated regime, which requires very long sim-
ulations. Therefore the comparison between MD and the ILMM to the case
d = 2 is more difficult. Only recently MD simulations start to give reliable
measurements even for long times, and, where possible, the comparison with
our ILMM is promising.

More speculatively, we tried a series of less standard measurements with
two different aims: the first is to try to understand what kind of effective
equation could describe the velocity field of the ILMM; the second is to
discuss some basic hypothesis necessary to a hydrodynamic description of
this granular fluid. After a brief review of the known results from MD, we
present the results obtained with our 2D ILMM. First the same analysis of
energy decay, velocity pdf and structure factors is carried on, as in the 1d case.
Moreover, to better capture the nature of the topological defects generated
by the dynamics, we consider the pdf of the velocity increments. Then we
present an analysis of temporal correlations, mainly aimed to identify an
effective equation for the velocity field. Finally we suggest a measurement
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of a hydrodynamic temperature and we sketch a discussion about the very
presence of scale separation.

5.1 Known results from Molecular Dynamics

To our knowledge few MD simulations have inspected the behavior of in-
elastic hard disks in the late stage, i.e. after the end of Haff regime and the
growth of instabilities. The departure from the homogeneity has been studied
by Ernst and co-workers [6–8] and their MD simulations have shown results
compatible with their predicted τ1/2 scaling law for the linear size of struc-
tures (vortices and clusters). A figure in a work of Huthmann et al. [43] was
the first suggestion that the global velocity pdf asymptotically returns to a
Gaussian (while it has fatter tails in the HCS) and recently different works
on large MD simulations have confirmed this [44,10]. Recently this “return-
to-the-Gaussian” scenario was put in strict relation with the presence of a
Burgers-like dynamics [10]. The debate on the asymptotic energy seems to
be still open, even if there are strong indications of a universal (independent
of r) decay of the form E(t) ∼ t−1 [10]. A recent work of Isobe [20] demon-
strates that many features of the “last” stage resemble the dynamics of 2D
turbulence.

5.2 The Inelastic Maxwell Lattice Model

The ILMM in d = 2 is identical to that in d = 1 except for the fact that the
particles have a 2-components vector velocity vi and that they are placed on a
triangular 2D lattice, i.e. every particle has 6 neighbors. The dynamics is the
same as in d = 1; the kinematic constraint here reads (vi −vj) · (ri − rj) < 0.

The decay of energy E(τ) is shown in figure 8 for two different values of
r. The Haff regime E(τ) ∼ exp(−γ0τ) is well reproduced (when r = 0.2 it
terminates too early to be appreciated). The asymptotic decay reads E(τ) ∼
τ−1. Both this measurement and the decay observed in the d = 1 case, are
compatible with a universal law E(τ) ∼ τ−d/2 as for a purely diffusive field.

The rescaled velocity pdf’s (see figure 9), which are initially Gaussian,
become non-Gaussian in the Haff regime, with larger tails, but return Gaus-
sian in the late stage. The analysis that follows shows that, in the late stage,
the velocity field is far from being homogeneous: the global velocity pdf is
strongly influenced by this homogeneity and its Gaussian form could be sim-
ply the signature of the presence of many independent domains (i.e. it is just
the distribution of the average velocities of these domains).

In the figures 10 and 11 we show the presence of vortices in the velocity
fields. The second figure represents the same system at a later time, demon-
strating the coarsening of vortices (their number reduces and their size in-
creases).

In d = 2 the structure function is defined as
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Fig. 10. A (zoomed) snapshot of the velocity field at time τ = 52 for the Inelastic
Lattice Gas, d = 2, with r = 0.7 and size N = 512×512. The time has been chosen
at the beginning of the correlated regime. It is evident the presence of vortices. All
the velocities have been rescaled to arbitrary units, in order to be visible.
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Fig. 11. Another snapshot of the same system of fig. 10 but at a later time τ = 535.
The diameter of the vortices has grown up. All the velocities have been rescaled to
arbitrary units, in order to be visible.

St,l(k, t) =
∑

k̂

vt,l(k, t)vt,l(−k, t) (12)

where the superscripts t, l indicate the transverse and longitudinal compo-
nents of the field with respect to the wave vector k and the sum

∑

k̂ is over
a circular shell of radius k. The analysis of the structure factor, shown in
figure 12, is performed for two systems at different inelasticities. The com-
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τ . Notice the presence of

the plateaux for the more elastic system. For comparison we have drawn the laws
x−4 and exp(−x2).

mon feature is a good collapse of different time curves if plotted against
kτ1/2 which is the signature of a domain growth (diameter of the vortices)
L(τ) ∼ τ1/2. The elasticity however changes dramatically the other features:
the more elastic system has a Gaussian structure factor at large scale (low
values of k) and a plateau at small scales, i.e. quasi-elastic collisions random-
ize neighbour velocities while the effect of inelasticity induces a structure
at large scale. The less elastic system does not present such a plateau, but
a decay k−4 at small scales which is analogous to the Porod law [40,41]
expected from the presence of defects in a phase ordering process. The differ-
ence between transversal and longitudinal component (more appreciable in
the quasi-elastic system) is coherent with the theoretical analysis discussed
in the introduction, which predicts an earlier and stronger correlation for the
transversal compoenent.

In the d = 2 ILMM we have also observed shock-like phenomena. The
inspection of the distribution of longitudinal and transversal velocity differ-
ences, defined as

∆l(R, i) = (vi+R − vi) ·
R

R
(13a)

∆t(R, i) = (vi+R − vi) ×
R

R
(13b)
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Fig. 13. Probability densities of the longitudinal and transverse velocity incre-
ments. The main figure shows the p.d.f. of the velocity differences for R = 1. The
inset shows the Gaussian shape measured for R = 40 (larger than L(t) for this
simulation: r = 0.2, t = 620, system size 20482).

is contained in figure 13. The main graph shows the case R = 1, i.e. the distri-
butions of gradients. Both the longitudinal and transverval components are
distributed with non-Gaussian tails, but the longitudinal component presents
also a strong asymmetry: this means that preferentially there are strong ve-
locity differences in the direction of growing longitudinal velocity. This is
compatible with the analysis of shocks in the bottom panels of figure 6 in the
d = 1 case. When R � 1 the distribution of velocity differences is a Gaussian.

To better study the dynamics of the system we have calculated the two-
times self-correlation of the velocity components

C(τ1, τ2) =

∑

i vi(τ1)vi(τ2)

N
(14)

During a short time transient, the self-correlation function of our model de-
pends on τ1 − τ2, i.e. it is time translational invariant (TTI). Later, C(τ1, τ2)
reaches an “aging” regime and depends only on the ratio x = τ1/τ2. This
TTI transient regime is similar to what occurs during the coarsening process
of a quenched magnetic system: the self-correlation of the local magnetiza-
tion a(τw , τw + τ) for τ � τw shows a TTI decay toward a constant value
m2

eq(Tquench) that is the square of the equilibrium magnetization, indicating
that the local magnetization is evolving in an ergodic-like fashion. Thereafter
the self-correlation decays with the aging scaling law indicated above. Obvi-
ously, when Tquench → 0, the TTI transient regime disappears. In our model
the behavior of the self-correlation is even more subtle, as the cooling pro-
cess imposes a (slowly) decreasing “equilibrium” temperature Tquench → 0:
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ing time τw and r = 0.9 (10242 sites). The graph on the left shows the convergence
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visible (for such a quasi elastic dynamics). In the graph on the right the same data
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the position of the local minimum does not move sensibly, but its value grows and
goes to 1 for large τw

this progressively erodes the TTI regime and better resembles a finite rate
quench. The same dependence on the TTI manifests itself in the angular
auto-correlation, shown in figure 14:

A(τ, τw) =
1

N

∑

i

cos(θi(τw + τ) − θi(τw)). (15)

The non-monotonic behavior of A(t, tw) suggests that the initial direction
of the velocity induces a change in the velocities of the surrounding particles,
which in turn generates, through a sequence of correlated collisions, a kind of
retarded field oriented as the initial velocity. As tw increases the maximum
is less and less pronounced.

The behavior of the energy decay (E(τ) ∼ τ−d/2), the law of growth of do-
mains (L(τ) ∼ τ1/2) and the “aging” form of the two-times self-correlations,
as well as the Gaussian velocity pdf’s and the Gaussian form at large scale
in the structure factors, are strong evidence that the model behaves similarly
to a system governed by the diffusion equation:

∂φi

∂τ
= D

∑

j

∂2
i φ

∂r2
j

(16)
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Fig. 15. Measure of the persistence of the Inelastic Lattice Gas in d = 2, for two
different values of the restitution coefficient. The power-law regime corresponds to
the correlated regime. The measured exponent θ = 0.18 is, with this precision, equal
to the persistence exponent numerically measured in the diffusive dynamics.

where φ is a suitable field depending on the velocity field (it could be a scalar,
for example the z-component of the vorticity field ∇ × v).

To perform a further check of this conjecture, we have measured the per-
sistence exponent [45] of the model, which is very sensitive to the class of
universality. We have counted the number Ns(τ) of sites where the x velocity
component never changed sign from the starting time of the dynamics up
to time τ . In the correlated regime we observe Ns(τ) ∼ τ−θ with θ = 0.18
which is equal, up to this precision, to the persistence exponent numerically
measured for the diffusive dynamics.

In the spirit of verifying the possibility of a hydrodynamic (mesoscopic)
description of this model, we have also analysed the average local granular
temperature Tσ, defined as:

Tσ = 〈|v − 〈v〉σ |2〉σ (17)

where 〈...〉σ means an average on a region of linear size σ.
If we call L(t) a characteristic correlation length of the system, since

when σ � L(t) the local average tends to the global (zero) momentum, then
limσ→∞ Tσ = E. For σ < L(t), instead, Tσ < E. The behavior of Tσ in
the uncorrelated (Haff) regime and in the correlated (asymptotic) regime for
two different values of r is presented in figure 16. For quasi elastic systems
Tσ exhibits a plateau for 1 � σ � L(t) that identifies the strength of the
internal noise (see also the plateau in the structure factor, figure 12) and
indicates the mesoscopic scale necessary for a hydrodynamics description.
The local temperature ceases to be well defined for smaller r, revealing an
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Fig. 16. The scale dependent temperature, Tσ, defined as function of the coarse
graining size σ for τ = 24 (incoherent regime) and τ = 860 (correlated regime for
both choices of r): the system is the same of figure 8. In the correlated regime
the more elastic case presents a plateau at intermediate wavelengths, indicating a
well defined mesoscopic temperature, and therefore a clear separation between the
microscopic and the macroscopic scales.

absence of scale separation between microscopic and macroscopic fluctuations
in the strongly inelastic regime [46].

6 Conclusions

We have analysed essentially three different problems with a strong intercon-
nection, in the framework of the physics of cooling granular gases. Our first
step (IMM) was to demonstrate that a simplified 1D version of the Boltzmann
equation for inelastic gases can be exactly solved by a P (v) with power law
tails. However, realistic granular systems never show such large tails: the key
feature that must be added to this oversimplified model is a realistic topol-
ogy. Therefore our second step (ILMM, d = 1) was to embed the IMM on
a 1D lattice. The P (v) changes dramatically and becomes identical to those
measured in MD simulations, also in the velocity-correlated stage. Moreover,
the ILMM allows for a study of spatial correlations, resulting in shock-like
structures very similar to the one observed in MD and strong analogies with
the MD structure functions. Our last step (ILMM, d = 2) has been the
passage from d = 1 to d = 2, which mainly results in the appearance of vor-
tices. Vortices are ubiquitous in granular gases experiments and simulations.
The ILMM simply produces vortices as a result of the competion between
the parallelizing effect of inelastic collisions and the constraint given by the
conservation of total momentum. Moreover, a large set of evidences (energy
decay, structure factors, Gaussian velocity pdf’s, aging self-correlations, per-
sistence exponent) indicate that the dynamical behavior of the system is
compatible with a diffusion equation, even if short scale defects (appearing
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as shocks, internal noise and tails à la Porod in the structure functions) make
this model richer.
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